본문 바로 가기

로고

국내 최대 기계 및 로봇 연구정보
통합검색 화살표
  • 시편절단기 Mecatome T180
  • 기술보고서

    기술보고서 게시판 내용
    타이틀 Dual-Doppler Feasibility Study
    저자 Huddleston, Lisa L.
    Keyword CAPE KENNEDY LAUNCH COMPLEX;; COMPUTER PROGRAMS;; DOPPLER RADAR;; FORECASTING;; METEOROLOGICAL INSTRUMENTS;; METEOROLOGY;; POSITION (LOCATION); RADAR DATA;; RADAR NETWORKS;; REAL TIME OPERATION;; WEATHER FORECASTING;; WIND (METEOROLOGY); WIND DIRECTION;; WIND VELOCITY
    URL http://hdl.handle.net/2060/20120008721
    보고서번호 NASA/TM-2012-216310
    발행년도 2012
    출처 NTRS (NASA Technical Report Server)
    ABSTRACT When two or more Doppler weather radar systems are monitoring the same region, the Doppler velocities can be combined to form a three-dimensional Ɠ-D) wind vector field thus providing for a more intuitive analysis of the wind field. A real-time display of the 3-D winds can assist forecasters in predicting the onset of convection and severe weather. The data can also be used to initialize local numerical weather prediction models. Two operational Doppler Radar systems are in the vicinity of Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS); these systems are operated by the 45th Space Wing ࿍ SW) and the National Weather Service Melbourne, Fla. (NWS MLB). Dual-Doppler applications were considered by the 45 SW in choosing the site for the new radar. Accordingly, the 45th Weather Squadron ࿍ WS), NWS MLB and the National Aeronautics and Space Administration tasked the Applied Meteorology Unit (AMU) to investigate the feasibility of establishing dual-Doppler capability using the two existing systems. This study investigated technical, hardware, and software requirements necessary to enable the establishment of a dual-Doppler capability. Review of the available literature pertaining to the dual-Doppler technique and consultation with experts revealed that the physical locations and resulting beam crossing angles of the 45 SW and NWS MLB radars make them ideally suited for a dual-Doppler capability. The dual-Doppler equations were derived to facilitate complete understanding of dual-Doppler synthesis;; to determine the technical information requirements;; and to determine the components of wind velocity from the equation of continuity and radial velocity data collected by the two Doppler radars. Analysis confirmed the suitability of the existing systems to provide the desired capability. In addition, it is possible that both 45 SW radar data and Terminal Doppler Weather Radar data from Orlando International Airport could be used to alleviate any radar geometry issues at the NWS MLB radar, such as the "cone of silence" or beam blockage. In the event of a radar outage at one of the sites, the multi-radar algorithms would provide continuing coverage of the area through use of the data from the remaining operational radar sites. There are several options to collect, edit, synthesize and display dual-Doppler data sets. These options include commercial packages available for purchase and a variety of freeware packages available from the National Center for Atmospheric Research (NCAR) for processing raw radar data. However, evaluation of the freeware packages revealed that they do not have sufficient documentation and configuration control to be certified for 45 SW use. Additionally, a TI data line must be installed/leased from the NWS MLB office and CCAFS to enable the receipt of NWS MLB raw radar data to use in the dual-Doppler synthesis. Integration of the TI data line into the Eastern Range infrastructure that will meet the security requirements necessary for 45 SW use is time-consuming and costly. Overall evaluation indicates that establishment of the dual-Doppler capability using the existing operational radar systems is desirable and feasible with no technical concerns. Installation of such a system represents a significant enhancement to forecasting capabilities at the 45 WS and at NWS MLB. However, data security and cost considerations must be evaluated in light of current budgetary constraints. In any case, gaining the dual-Doppler capability will provide opportunities for better visualization of the wind field and better forecasting of the onset of convection and severe weather events to support space launch operations at KSC and CCAFS.

    서브 사이드

    서브 우측상단1