본문 바로 가기

로고

국내 최대 기계 및 로봇 연구정보
통합검색 화살표
  • ProJet 2500
  • 기술보고서

    기술보고서 게시판 내용
    타이틀 The Evolution of Open Magnetic Flux Driven by Photospheric Dynamics
    저자 Linker, Jon A.;; Lionello, Roberto;; Mikic, Zoran;; Titov, Viacheslav S.;; Antiochos, Spiro K.
    Keyword CORONAL HOLES;; CURRENT SHEETS;; HELIOSPHERE;; MAGNETIC FLUX;; MAGNETOHYDRODYNAMIC SIMULATION;; MAGNETOHYDRODYNAMICS;; SIMULATION;; SOLAR CORONA;; SOLAR MAGNETIC FIELD;; SOLAR PHYSICS;; SOLAR WIND
    URL http://hdl.handle.net/2060/20110007769
    보고서번호 none
    발행년도 2010
    출처 NTRS (NASA Technical Report Server)
    ABSTRACT The coronal magnetic field is of paramount importance in solar and heliospheric physics. Two profoundly different views of the coronal magnetic field have emerged. In quasi-steady models, the predominant source of open magnetic field is in coronal holes. In contrast, in the interchange model, the open magnetic flux is conserved, and the coronal magnetic field can only respond to the photospheric evolution via interchange reconnection. In this view the open magnetic flux diffuses through the closed, streamer belt fields, and substantial open flux is present in the streamer belt during solar minimum. However, Antiochos and co-workers, in the form of a conjecture, argued that truly isolated open flux cannot exist in a configuration with one heliospheric current sheet (HCS) - it will connect via narrow corridors to the polar coronal hole of the same polarity. This contradicts the requirements of the interchange model. We have performed an MHD simulation of the solar corona up to 20R solar to test both the interchange model and the Antiochos conjecture. We use a synoptic map for Carrington Rotation 1913 as the boundary condition for the model, with two small bipoles introduced into the region where a positive polarity extended coronal hole forms. We introduce flows at the photospheric boundary surface to see if open flux associated with the bipoles can be moved into the closed-field region. Interchange reconnection does occur in response to these motions. However, we find that the open magnetic flux cannot be simply injected into closed-field regions - the flux eventually closes down and disconnected flux is created. Flux either opens or closes, as required, to maintain topologically distinct open and closed field regions, with no indiscriminate mixing of the two. The early evolution conforms to the Antiochos conjecture in that a narrow corridor of open flux connects the portion of the coronal hole that is nearly detached by one of the bipoles. In the later evolution, a detached coronal hole forms, in apparent violation of the Antiochos conjecture. Further investigation reveals that this detached coronal hole is actually linked to the extended coronal hole by a separatrix footprint on the photosphere of zero width. Therefore, the essential idea of the conjecture is preserved, if we modify it to state that coronal holes in the same polarity region are always linked, either by finite width corridors or separatrix footprints. The implications of these results for interchange reconnection and the sources of the slow solar wind are briefly discussed.

    서브 사이드

    서브 우측상단1