본문 바로 가기

로고

국내 최대 기계 및 로봇 연구정보
통합검색 화살표
  • 시편절단기 Mecatome T210
  • 기술보고서

    기술보고서 게시판 내용
    타이틀 Turbulence Modeling for Shock Wave/Turbulent Boundary Layer Interactions
    저자 Lillard, Randolph P.
    Keyword CORRELATION;; HIGH SPEED;; NONEQUILIBRIUM FLOW;; PRESSURE GRADIENTS;; REYNOLDS STRESS;; SAFETY;; SHOCK WAVES;; STRAIN RATE;; TURBULENCE MODELS;; TURBULENT BOUNDARY LAYER;; WIND TUNNEL TESTS
    URL http://hdl.handle.net/2060/20110023251
    보고서번호 JSC-CN-25068
    발행년도 2011
    출처 NTRS (NASA Technical Report Server)
    ABSTRACT Accurate aerodynamic computational predictions are essential for the safety of space vehicles, but these computations are of limited accuracy when large pressure gradients are present in the flow. The goal of the current project is to improve the state of compressible turbulence modeling for high speed flows with shock wave / turbulent boundary layer interactions (SWTBLI). Emphasis will be placed on models that can accurately predict the separated region caused by the SWTBLI. These flows are classified as nonequilibrium boundary layers because of the very large and variable adverse pressure gradients caused by the shock waves. The lag model was designed to model these nonequilibrium flows by incorporating history effects. Standard one- and two-equation models (Spalart Allmaras and SST) and the lag model will be run and compared to a new lag model. This new model, the Reynolds stress tensor lag model (lagRST), will be assessed against multiple wind tunnel tests and correlations. The basis of the lag and lagRST models are to preserve the accuracy of the standard turbulence models in equilibrium turbulence, when the Reynolds stresses are linearly related to the mean strain rates, but create a lag between mean strain rate effects and turbulence when nonequilibrium effects become important, such as in large pressure gradients. The affect this lag has on the results for SWBLI and massively separated flows will be determined. These computations will be done with a modified version of the OVERFLOW code. This code solves the RANS equations on overset grids. It was used for this study for its ability to input very complex geometries into the flow solver, such as the Space Shuttle in the full stack configuration. The model was successfully implemented within two versions of the OVERFLOW code. Results show a substantial improvement over the baseline models for transonic separated flows. The results are mixed for the SWBLI assessed. Separation predictions are not as good as the baseline models, but the over prediction of the peak heat flux downstream of the reattachment shock that plagues many models is reduced.

    서브 사이드

    서브 우측상단1