본문 바로 가기

로고

국내 최대 기계 및 로봇 연구정보
통합검색 화살표
  • uPrint SE (3D프린터)
  • 기술보고서

    기술보고서 게시판 내용
    타이틀 Dynamical Model for the Zodiacal Cloud and Sporadic Meteors
    저자 Nesvorny, David;; Janches, Diego;; Vokrouhlicky, David;; Pokorny, Petr;; Bottke, William F.;; Jenniskens, Peter
    Keyword COMETS;; COSMIC DUST;; INFRARED ASTRONOMY SATELLITE;; LONG DURATION EXPOSURE FACILITY;; METEOROIDS;; SOLAR NEBULA;; SPACE DEBRIS;; STARDUST MISSION;; ZODIACAL DUST
    URL http://hdl.handle.net/2060/20110023041
    보고서번호 GSFC.JA.5328.2011
    발행년도 2011
    출처 NTRS (NASA Technical Report Server)
    ABSTRACT The solar system is dusty, and would become dustier over time as asteroids collide and comets disintegrate, except that small debris particles in interplanetary space do not last long. They can be ejected from the solar system by Jupiter, thermally destroyed near the Sun, or physically disrupted by collisions. Also, some are swept by the Earth (and other planets), producing meteors. Here we develop a dynamical model for the solar system meteoroids and use it to explain meteor radar observations. We find that the Jupiter Family Comets (JFCs) are the main source of the prominent concentrations of meteors arriving to the Earth from the helion and antihelion directions. To match the radiant and orbit distributions, as measured by the Canadian Meteor Orbit Radar (CMOR) and Advanced Meteor Orbit Radar (AMOR), our model implies that comets, and JFCs in particular, must frequently disintegrate when reaching orbits with low perihelion distance. Also, the collisional lifetimes of millimeter particles may be longer (approx. > 10(exp 5) yr at 1 AU) than postulated in the standard collisional models (approx 10(exp 4) yr at 1 AU), perhaps because these chondrule-sized meteoroids are stronger than thought before. Using observations of the Infrared Astronomical Satellite (IRAS) to calibrate the model, we find that the total cross section and mass of small meteoroids in the inner solar system are Ƒ.7-3.5) 10(exp 11) sq km and approx. 4 10(exp 19) g, respectively, in a good agreement with previous studies. The mass input required to keep the Zodiacal Cloud (ZC) in a steady state is estimated to be approx. 10(exp 4)-10(exp 5) kg/s. The input is up to approx 10 times larger than found previously, mainly because particles released closer to the Sun have shorter collisional lifetimes, and need to be supplied at a faster rate. The total mass accreted by the Earth in particles between diameters D = 5 micron and 1 cm is found to be approx 15,000 tons/yr (factor of 2 uncertainty), which is a large share of the accretion flux measured by the Long Term Duration Facility (LDEF). Majority of JFC particles plunge into the upper atmosphere at <15 km/s speeds, should survive the atmospheric entry, and can produce micrometeorite falls. This could explain the compositional similarity of samples collected in the Antarctic ice and stratosphere, and those brought from comet Wild 2 by the Stardust spacecraft. Meteor radars such as CMOR and AMOR see only a fraction of the accretion flux (approx 1- 10% and approx 10-50%, respectively), because small particles impacting at low speeds produce ionization levels that are below these radars detection capabilities.

    서브 사이드

    서브 우측상단1