MERRIC인
Impingement/effusion cooling with a hollow cylinder structure for additive manufacturing.
Minho Bang(Additive manufacturing)
Korea | International Journal of Heat and Mass Transfer

■ View full text 

International Journal of Heat and Mass Transfer

https://www.sciencedirect.com/science/article/pii/S0017931020307808

  

 

■ Researchers

Minho Bang

Agency for Defense Development, Aerospace Technology Research Institute

Kim, S., Choi, S., Sohn, H. S., & Cho, H. H. (2020). Impingement/effusion cooling with a hollow cylinder structure for additive manufacturing. International Journal of Heat and Mass Transfer, 155, 119786. 5. Bang, M., Choi, S. M., Sohn, H. S., Park, J. S., & Cho, H. H.

Department of Mechanical Engineering, Yonsei University

 

 

■ Abstract

The aim of this study is to investigate heat transfer characteristics in new laminated plates having impingement/effusion cooling with a hollow cylinder structure. Three perforated plates are set up in parallel position to model impingement/effusion cooling system with a hollow cylinder structure. Local heat/mass transfer coefficients on all surfaces including upper surface of bottom plate, lower surface of mid plate, upper surface of mid plate, and lower surface of top plate in a new structure are obtained using the naphthalene sublimation method. The ratio of channel height to hole diameter, h/D, and the ratio of hole pitch to hole diameter, P/D, are fixed at 0.5 and 6, respectively. The range of the Reynolds number based on the hole diameter is from 2,000 to 7,000. For all tested surfaces, local Sherwood number shows high values near the stagnation region and at the regions where flow acceleration to the effusion hole occurs. A similar trend of the area-averaged Sherwood numbers on all tested surfaces except upper surface of bottom plate appears because of the flow regime variations depending on the Reynolds numbers. The new structure has higher value than existing other multi-layered structures, with an improvement of 32.4% in heat/mass transfer and 24.4% in thermal performance factor at ReD = 5,000. A correlation between the area-averaged Sherwood number and the Reynolds number is obtained. This proposed structure will improve the thermal durability and reliability of the hot components of gas turbines by being implemented on hot components of gas turbines using an additive manufacturing.

 

 

인쇄 Facebook Twitter 스크랩

  전체댓글 0

[로그인]

댓글 입력란
사용자 프로필 이미지
0/500자