본문 바로 가기

로고

국내 최대 기계 및 로봇 연구정보
통합검색 화살표
  • 시편절단기 Mecatome T180
  • 추천서적

    연구동향집 이미지

    Foundation of MEMS : International Edition

    Chang Liu|2011.05.01

    Chapter 1: Introduction
    1.0. Preview    
    1.1.  The History of MEMS Development    
    1.1.1. From the Beginning to 1990    
    1.1.2. From 1990 to 2001    
    1.1.3. 2002 to present    
    1.1.4. Future Trends    
    1.2. The Intrinsic Characteristics of MEMS    
    1.2.1. Miniaturization    
    1.2.2. Microelectronics Integration    
    1.2.3. Parallel Fabrication with Precision    
    1.3. Devices: Sensors and Actuators         
    1.3.1. Energy Domains and Transducers         
    1.3.2. Sensors Considerations         
    13.3.  Sensor Noise and Design Complexity         
    1.3.4. Actuators Considerations         
    Summary   
    Problems 
    References 

    Chapter 2: First-Pass Introduction to Microfabrication           
    2.0. Preview         
    2.1. Overview of Microfabrication         
    2.2. Essential Overview of Frequently Used Microfabrication Processes    
    2.2.1. Photolithography         
    2.2.2. Thin film deposition         
    2.2.3. Thermal oxidation of silicon         
    2.2.4. Wet Etching         
    2.2.5. Silicon anisotropic etching         
    2.2.6. Plasma etching and reactive ion etching         
    2.2.7. Doping         
    2.2.8. Wafer dicing         
    2.2.9. Wafer bonding         
    2.3. The Microelectronics Fabrication Process Flow         
    2.4. Silicon-based MEMS Processes         
    2.5. Packaging and Integration         
    2.5.1. Integration Options         
    2.5.2. Encapsulation         
    2.6. New Materials and Fabrication Processes         
    2.7. Process Selection and Design         
    2.7.1. Points of Consideration for Deposition Processes    
    2.7.2. Points of Consideration for Etching Processes         
    2.7.3. Ideal Rules for Building a Process Flow         
    2.7.4. Rules for Building a Robust Process         
    Summary         
    Problems         
    References         

    Chapter 3: Review of Essential Electrical and Mechanical Concepts         
    3.0 Preview         
    3.1. Conductivity of Semiconductors         
    3.1.1. Semiconductor Materials         
    3.1.2. Calculation of Charge Carrier Concentration         
    3.1.3. Conductivity and Resistivity         
    3.2. Crystal Planes and Orientations         
    3.3. Stress and Strain         
    3.3.1. Internal Force Analysis: Newton's Laws of Motion         
    3.3.2. Definitions of Stress and Strain         
    3.3.3. General Scalar Relation between Tensile Stress and Strain         
    3.3.4. Mechanical Properties of Silicon and Related Thin Films         
    3.3.5. General Stress — Strain Relations         
    3.4. Flexural Beam Bending Analysis under Simple Loading Conditions         
    3.4.1. Types of Beams         
    3.4.2. Longitudinal Strain under Pure Bending         
    3.4.3. Deflection of Beams         
    3.4.4. Finding the Spring Constants         
    3.5. Torsional Deflections         
    3.6. Intrinsic Stress         
    3.7. Dynamic System, Resonant Frequency, and Quality Factor         
    3.7.1. Dynamic System and Governing Equation         
    3.7.2. Response under Sinusoidal Resonant Input         
    3.7.3. Damping and Quality Factor         
    3.7.4. Resonant Frequency and Bandwidth         
    3.8. Active Tuning of Spring Constant and Resonant Frequency         
    3.9. A List of Suggested Courses and Books         
    Summary         
    Problems         
    References
             
    Chapter 4: Electrostatic Sensing and Actuation
    Section 4.0. Preview         
    Section 4.1.  Introduction to Electrostatic Sensors and Actuators         
    Section 4.2. Parallel Plate Capacitor         
    4.2.1. Capacitance of Parallel Plates         
    4.2.2.  Equilibrium Position of Electrostatic Actuator under Bias         
    4.2.3. Pull-in Effect of Parallel-Plate Actuators         
    Section 4.3. Applications of Parallel-Plate Capacitors         
    4.3.1. Inertia Sensor         
    4.3.2. Pressure Sensor         
    4.3.3. Flow Sensor         
    4.3.4. Tactile sensor         
    4.3.5. Parallel-plate actuators         
    Section 4.4. Interdigitated Finger Capacitors         
    Section 4.5. Applications of Comb-Drive Devices         
    4.5.1. Inertia Sensors         
    4.5.2. Actuators         
    Summary         
    Problems         
    Refer         

    Chapter 5: Thermal Sensing and Actuation
    5.0.     Preview         
    5.1. Introduction         
    5.1.1. Thermal Sensors         
    5.1.2. Thermal Actuators         
    5.1.3. Fundamentals of Thermal Transfer         
    5.2. Sensors and Actuators Based on Thermal Expansion
    5.2.1. Thermal Bimorph Principle         
    5.2.2. Thermal Actuators with a Single Material         
    5.3. Thermal Couples         
    5.4. Thermal Resistors         
    5.5. Applications         
    5.5.1. Inertia Sensors         
    5.5.2. Flow Sensors         
    5.5.3. Infrared Sensors         
    5.5.4. Other Sensors         
    Summary         
    Problems         
    References         

    Chapter 6:  Piezoresistive Sensors         
    6.0.     Preview         
    6.1.     Origin and Expression of Piezoresistivity         
    6.2.     Piezoresistive Sensor Materials         
    6.2.1. Metal Strain Gauges         
    6.2.2.     Single Crystal Silicon         
    6.2.3. Polycrystalline Silicon         
    6.3. Stress Analysis of Mechanical Elements         
    6.3.1. Stress in Flexural Cantilevers         
    6.3.2. Stress and Deformation in Membrane         
    6.4. Applications of Piezoresistive Sensors         
    6.4.1. Inertial Sensors         
    6.4.2. Pressure Sensors         
    6.4.3. Tactile sensor         
    6.4.4. Flow sensor         
    Summary         
    Problems         
    References         

    Chapter 7: Piezoelectric Sensing and Actuation    
    7.0. Preview    
    7.1. Introduction    
    7.1.1. Background   
    7.1.2. Mathematical description of piezoelectric effects    
    7.1.3. Cantilever piezoelectric actuator model    
    7.2. Properties of Piezoelectric Materials    
    7.2.1. Quartz    
    7.2.2. PZT    
    7.2.3. PVDF    
    7.2.4. ZnO    
    7.2.5. Other Materials    
    7.3. Applications    
    7.3.1. Inertia Sensors    
    7.3.2. Acoustic Sensors    
    7.3.3. Tactile Sensors    
    7.3.4. Flow Sensors    
    7.3.5. Surface Elastic Waves    
    Summary    
    Problems    
    References    

    Chapter 8: Magnetic Actuation    
    8.0. Preview    
    8.1. Essential Concepts and Principles    
    8.1.1. Magnetization and Nomenclatures    
    8.1.3. Selected Principles of Micro Magnetic Actuators    
    8.2 Fabrication of Micro Magnetic Components    
    8.2.1. Deposition of Magnetic Materials    
    8.2.2. Design and Fabrication of Magnetic Coil    
    8.3. Case Studies of MEMS Magnetic Actuators   
    Summary    
    Problems    
    References    

    Chapter 9: Summary of Sensing and Actuation Methods
    9.0. Preview    
    9.1. Comparison of Major Sensing and Actuation Methods   
    9.2. Other Sensing and Actuation Methods   
    9.2.1. Tunneling Sensing    
    9.2.3 Optical Sensing    
    9.2.4. Field Effect Transistors    
    9.2.5. Radio Frequency Resonance Sensing    
    Summary    
    Problems   
    References   

    Chapter 10: Bulk Micromachining and Silicon Anisotropic Etching    
    10.0.      Preview    
    10.1.     Introduction    
    10.2.     Anisotropic Wet Etching    
    10.2.1. Introduction    
    10.2.2. Rules of Anisotropic Etching–Simplest Case  
    10.2.3. Rules of Anisotropic Etching–Complex Structures    
    10.2.4. Forming Protrusions  
    10.2.5. Interaction of Etching Profiles from Isolated Patterns    
    10.2.6. Summary of design methodology   
    10.2.7. Chemicals for Wet Anisotropic Etching    
    10.3. Dry Etching and Deep Reactive Ion Etching    
    10.4. Isotropic Wet Etching  
    10.5. Gas Phase Etchants    
    10.6. Native Oxide    
    10.7. Special Wafers and Techniques    
    Summary    
    Problems    
    References    

    Chapter 11: Surface Micromachining    
    11.0. Preview    
    11.1. Basic Surface Micromachining Processes    
    11.1.1.     Sacrificial Etching Process    
    11.1.2. Micro Motor Fabrication Process–A First Pass    
    11.2.3. Micro Motor Fabrication Process–A Second Pass    
    11.1.4. Micro Motor Fabrication Process–Third Pass    
    11.2. Structural and Sacrificial Materials    
    11.2.1. Material Selection Criteria for a Two-layer Process   
    11.2.2. Thin Films by Low Pressure Chemical Vapor Deposition    
    11.2.3. Other Surface Micromachining Materials and Processes    
    11.3. Acceleration of Sacrificial Etch    
    11.4. Stiction and Anti-stiction Methods    
    Summary    
    Problems    
    References    

    Chapter 12: Process Synthesis: Putting It all Together    
    12.0.     Preview    
    12.1. Process for Suspension Beams    
    12.2. Process for Membranes    
    12.3. Psp;   
    12.3.1. SPM Technologies Case Motivation    
    12.3.2. General Fabrication Methods for Tips   
    12.3.3. Cantilevers with Integrated Tips    
    12.3.4. Cantilevers with Integrated Sensors    
    12.3.5. SPM Probes with Actuators    
    12.4. Practical Factors Affecting Yield of MEMS    
    Summary    
    Problems    
    References    

    Chapter 13: Polymer MEMS    
    13.0. Preview    
    13.1. Introduction    
    13.2. Polymers in MEMS    
    13.2.1. Polyimide    
    13.2.2. SU-8    
    13.2.3. Liquid Crystal Polymer (LCP)    
    13.2.4. PDMS    
    13.2.5. PMMA   
    13.2.6. Parylene  
    13.2.7. Fluorocarbon   
    13.2.8. Other Polymers    
    13.3. Representative Applications    
    13.3.1. Acceleration Sensors    
    13.3.2. Pressure Sensors    
    13.3.3. Flow sensors    
    13.3.4. Tactile Sensors    
    Summary    
    Problems    
    Reference    

    Chapter 14: Micro Fluidics Applications   
    14.0. Preview    
    14.1. Motivation for Microfluidics    
    14.2. Essential Biology Concepts    
    14.3. Basic Fluid Mechanics Concepts   
    14.3.1. The Reynolds Number and Viscosity    
    14.3.2. Methods for Fluid Movement in Channels    
    14.3.3. Pressure Driven Flow    
    14.3.4. Electrokinetic Flow    
    14.3.5. Electrophoresis and Dielectrophoresis    
    14.4. Design and Fabrication of Selective Components    
    14.4.1. Channels    
    14.4.2. Valves    
    Summary    
    Problems    
    References    

    Chapter 15: Case Studies of Selected MEMS Products    
    15.0. Preview    
    15.1. Case Studies: Blood Pressure (BP) Sensor   
    15.1.1. Background and History   
    15.1.2. Device Design Considerations    
    15.1.3. Commercial Case: NovaSensor BP Sensor    
    15.2. Case Studies: Microphone    
    15.2.1. Background and History    
    15.2.2. Design Considerations    
    15.2.3. Commercial Case: Knowles Microphone    
    15.3. Case Studies: Acceleration Sensors    
    15.3.1. Background and History    
    15.4.2. Design Considerations    
    15.4.1. Commercial Case: Analog Devices and MEMSIC   
    15.4. Case Studies: Gyros    
    15.4.1. Background and History    
    15.4.2. The Coriolis Force  
    15.4.3. MEMS Gyro Design    
    15.4.4. Single Axis Gyro Dynamics   
    15.4.4. Commercial Case: InvenSense Gyro    
    15.5 Summary of Top Concerns for MEMS Product Development    
    15.5.1. Performance and Accuracy    
    15.5.2. Repeatability and Reliability    
    15.5.3. Managing the Cost of MEMS Products    
    15.5.4. Market Uncertainties, Investment, and Competition    
    Summary    
    Problems    
    References    

    Appendix 1: Characteristics of selected MEMS material
    Appendix 2: Frequently Used Formula for Beams, Cantilevers, and Plates
    Appendix 3: Basic Tools for Dealing with a Mechanical Second-order Dynamic System
    Appendix 4: Most Commonly Encountered Materials
    Appendix 5: Most Commonly Encountered Material Removal Process Steps
    Appendix 6: A List of General Compatibility between General Materials and Processes
    Appendix 7: Comparison of Commercial Inertial Sensors
    Answers to selected problems
    Index

    • 페이스북아이콘
    • 트위터 아이콘

    서브 사이드

    서브 우측상단1