Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water Hyunwoo Yuk(Soft Active Materials Lab., MIT)
United States | Nature Communications
|
■ View full text
Nature Communications
Published: 01 February 2017
https://www.nature.com/articles/ncomms14230
■ Researchers
Hyunwoo Yuk, Shaoting Lin, Chu Ma, Mahdi Takaffoli, Nicolas X. Fang & Xuanhe Zhao
Department of Mechanical Engineering, Massachusetts Institute of Technology
■ Abstract
Sea animals such as leptocephali develop tissues and organs composed of active transparent hydrogels to achieve agile motions and natural camouflage in water. Hydrogel-based actuators that can imitate the capabilities of leptocephali will enable new applications in diverse fields. However, existing hydrogel actuators, mostly osmotic-driven, are intrinsically low-speed and/or low-force; and their camouflage capabilities have not been explored. Here we show that hydraulic actuations of hydrogels with designed structures and properties can give soft actuators and robots that are high-speed, high-force, and optically and sonically camouflaged in water. The hydrogel actuators and robots can maintain their robustness and functionality over multiple cycles of actuations, owing to the anti-fatigue property of the hydrogel under moderate stresses. We further demonstrate that the agile and transparent hydrogel actuators and robots perform extraordinary functions including swimming, kicking rubber-balls and even catching a live fish in water.
■ Results
Osmotic and hydraulic actuation of hydrogels
While the active and transparent hydrogel-based tissues and organs of leptocephali endow them with agile motion and natural camouflage in water, such striking capabilities have not been achieved by synthetic hydrogel actuators and robots (Fig. 1a,b and Supplementary Movie 1)1,2. Despite recent developments of hydrogels responsive to various stimuli11,12,13,14,15,16, existing hydrogel actuators are mostly osmotic-driven (that is, based on swelling/de-swelling) and suffer from the intrinsic coupling between responsive times and the actuation forces. As illustrated in Fig. 1c, the swelling-induced force F from a constrained hydrogel block and the responsive time t scale as
* 관련 자료